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A probability forecast or probabilistic classifier is reliable or cal-
ibrated if the predicted probabilities are matched by ex post
observed frequencies, as examined visually in reliability diagrams.
The classical binning and counting approach to plotting reliability
diagrams has been hampered by a lack of stability under unavoid-
able, ad hoc implementation decisions. Here, we introduce the
CORP approach, which generates provably statistically consis-
tent, optimally binned, and reproducible reliability diagrams in
an automated way. CORP is based on nonparametric isotonic
regression and implemented via the pool-adjacent-violators (PAV)
algorithm—essentially, the CORP reliability diagram shows the
graph of the PAV-(re)calibrated forecast probabilities. The CORP
approach allows for uncertainty quantification via either resam-
pling techniques or asymptotic theory, furnishes a numerical
measure of miscalibration, and provides a CORP-based Brier-score
decomposition that generalizes to any proper scoring rule. We
anticipate that judicious uses of the PAV algorithm yield improved
tools for diagnostics and inference for a very wide range of
statistical and machine learning methods.

calibration | discrimination ability | probability forecast |
score decomposition | weather prediction

Calibration or reliability is a key requirement on any prob-
ability forecast or probabilistic classifier. In a nutshell, a

probabilistic classifier assigns a predictive probability to a binary
event. The classifier is calibrated or reliable if, when looking
back at a series of extant forecasts, the conditional event fre-
quencies match the predictive probabilities. For example, if
we consider all cases with a predictive probability of about
0.80, the observed event frequency ought to be about 0.80
as well. While for many decades, researchers and practition-
ers have been checking calibration in myriads of applications
(1, 2), the topic is subject to a surge of interest in machine
learning (3), spurred by the recent recognition that “modern
neural networks are uncalibrated, unlike those from a decade
ago” (4).

Reliability Diagrams: Binning and Counting
The key diagnostic tool for checking calibration is the reliability
diagram, which plots the observed event frequency against the
predictive probability. In discrete settings, where there are only
a few predictive probabilities, such as, e.g., 0, 1

10
, . . . , 9

10
, 1, this is

straightforward. However, even in discrete settings, there might
be many such values. Furthermore, statistical and machine-
learning approaches to binary classification generate continuous
predictive probabilities that can take any value between zero
and one, and typically the forecast values are pairwise distinct.
In these settings, researchers have been using the “binning and
counting” approach, which starts by selecting a certain, typi-
cally arbitrary, number of bins for the forecast values. Then,
for each bin, one plots the respective conditional event fre-
quency versus the midpoint or average forecast value in the bin.
For calibrated or reliable forecasts, the two quantities ought to
match, and so the points plotted ought to lie on, or close to, the
diagonal (2, 5).

In Fig. 1 A, C and E, we show reliability diagrams based on
the binning and counting approach with a choice of m = 10
equally spaced bins for 24-h-ahead daily probability of pre-

cipitation forecasts at Niamey, Niger, in July–September 2016.
They concern three competing forecasting methods, including
the world-leading, 52-member ensemble system run by the Euro-
pean Center for Medium-Range Weather Forecasts [ENS (6)],
a reference forecast called extended probabilistic climatology
(EPC), and a purely data-driven statistical forecast (Logistic), as
described by Vogel et al. (ref. 7, figure 2).

Not surprisingly, the classical approach to plotting reliability
diagrams is highly sensitive to the specification of the bins, and
the visual appearance may change drastically under the slight-
est change. We show an example in Fig. 2 A–C for a fourth type
of forecast at Niamey, namely, a statistically postprocessed ver-
sion of the ENS forecast called ensemble model output statistics
(EMOS), for which choices of m = 9, 10, or 11 equidistant bins
yield drastically distinct reliability diagrams. This is a discon-
certing state of affairs for a widely used data-analytic tool and
contrary to well-argued recent pleas for reproducibility (8) and
stability (9).

A simple and seemingly effective enhancement is to use evenly
populated bins, as opposed to equidistantly spaced bins. Perhaps
surprisingly, instability remains a major issue, typically caused by
multiple occurrences of the same forecast value at bin breaks.
Furthermore, the instabilities carry over to associated numer-
ical measures of calibration, such as the Brier-score reliability
component (10–14) and the Hosmer–Lemeshow statistic (15–
19). These issues have been well documented in both research
papers (16–20) and textbooks (21–23) and may occur even when
the size n of the dataset is large. See SI Appendix, sections S1 and
S2 for illustrations on meteorological, geophysical, social science,
and economic forecast datasets.

Significance

Probabilistic classifiers assign predictive probabilities to binary
events, such as rainfall tomorrow, a recession, or a personal
health outcome. Such a system is reliable or calibrated if
the predictive probabilities are matched by the observed fre-
quencies. In practice, calibration is assessed graphically in
reliability diagrams and quantified via the reliability com-
ponent of mean scores. Extant approaches rely on binning
and counting and have been hampered by ad hoc imple-
mentation decisions, a lack of reproducibility, and inefficiency.
Here, we introduce the CORP approach, which uses the pool-
adjacent-violators algorithm to generate optimally binned,
reproducible, and provably statistically consistent reliability
diagrams, along with a numerical measure of miscalibration
based on a revisited score decomposition.
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Fig. 1. Reliability diagrams for probability of precipitation forecasts over Niamey, Niger (7), in July–September 2016 under ENS (A and B), EPC (C and D),
and Logistic (E and F) methods. (A, C, and E) We show reliability diagrams under the binning and counting approach with a choice of 10 equally spaced bins.
(B, D, and F) We show CORP reliability diagrams with uncertainty quantification through 90% consistency bands. The histograms at the bottom illustrate
the distribution of the n = 92 forecast values.

While alternative methods for the choice of the binning have
been proposed in the literature (5, 24, 25), extant approaches
exhibit similar instabilities, lack theoretical justification, are elab-
orate, and have not been adopted by practitioners. Instead,
researchers across disciplines continue to craft reliability dia-

grams and report associated measures of calibration based on ad
hoc choices. In this light, Stephenson et al. (ref. 26, p. 757) call for
the development of “nonparametric approaches for estimating
the reliability curves (and hence the Brier score components),
which also include[d] point-wise confidence intervals.”
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Fig. 2. Reliability diagrams for probability of precipitation forecasts over Niamey, Niger (7), in July–September 2016 with the EMOS method, using the
binning and counting approach with a choice of 9 (A), 10 (B), and 11 (C) equidistant bins, together with the CORP reliability diagram (D), for which we
provide uncertainty quantification through 90% consistency bands.

Here, we introduce an approach to reliability diagrams and
score decompositions, which resolves these issues in a theo-
retically optimal and readily implementable way, as illustrated
on the forecasts at Niamey in Figs. 1 B, D, and F and 2D.
In a nutshell, we use nonparametric isotonic regression and
the pool-adjacent-violators (PAV) algorithm to estimate condi-
tional event probabilities (CEPs), which yields a fully automated
choice of bins that adapts to both discrete and continuous set-
tings, without any need for tuning parameters or implementation
decisions. We equip the diagram with quantitative measures
of (mis)calibration (MCB), discrimination ability (DSC), and
uncertainty (UNC), which improve upon the classical Brier-score
decomposition in terms of stability. We call this stable approach
CORP, as its novelty and power include the following four
properties.

Consistency. The CORP reliability diagram and the MCB mea-
sure of (mis)calibration are consistent in the classical statistical
sense of convergence to population characteristics. We lever-
age existing asymptotic theory (27–29) to demonstrate that the
rate of convergence is best possible and to generate large sample
consistency and confidence bands for uncertainty quantification.

Optimality. The CORP reliability diagram is optimally binned, in
that no other choice of bins generates more skillful (re)calibrated
forecasts, subject to regularization via isotonicity (ref. 30,
theorem 1.10, and refs. 31 and 32).

Reproducibility. The CORP approach does not require any tun-
ing parameters or implementation decision, thus yielding well-
defined and readily reproducible reliability diagrams and score
decompositions.

PAV Algorithm-Based. CORP is based on nonparametric isotonic
regression and implemented via the PAV algorithm, a classical
iterative procedure with linear complexity only (33, 34). Essen-
tially, the CORP reliability diagram shows the graph of the
PAV-(re)calibrated forecast probabilities.

In the remainder of the article, we provide the details of CORP
reliability diagrams and score decompositions, and we substanti-
ate the above claims via mathematical analysis and simulation
experiments.

The CORP Approach: Optimal Binning via the PAV Algorithm
The basic idea of CORP is to use nonparametric isotonic
regression to estimate a forecast’s CEPs as a monotonic, non-
decreasing function of the original forecast values. Fortunately,
in this simple setting, there is one, and only one, kind of non-
parametric isotonic regression, for which the PAV algorithm
provides a simple algorithmic solution (33, 34). To each origi-
nal forecast value, the PAV algorithm assigns a (re)calibrated
probability under the regularizing constraint of isotonicity, as
illustrated in textbooks (ref. 35, figures 2.13 and 10.7), and
this solution is optimal under a very broad class of loss func-
tions (ref. 30, theorem 1.10). In particular, the PAV solution
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constitutes both the nonparametric isotonic least squares and
the nonparametric isotonic maximum-likelihood estimate of
the CEPs.

The CORP reliability diagram plots the PAV-calibrated prob-
ability versus the original forecast value, as illustrated on the
Niamey data in Figs. 1 B, D, and F and 2D. The PAV algorithm
assigns calibrated probabilities to the individual unique forecast
values, and we interpolate linearly in between, to facilitate com-
parison with the diagonal that corresponds to perfect calibration.
If a group of (one or more) forecast values are assigned identi-
cal PAV-calibrated probabilities, the CORP reliability diagram
displays a horizontal segment. The horizontal sections can be
interpreted as bins, and the respective PAV-calibrated probabil-
ities are simply the bin-specific empirical event frequencies. For
example, we see from Fig. 1B that the PAV algorithm assigns a
calibrated probability of 0.125 to ENS forecast values between
9
52

and 20
52

and a calibrated probability of 0.481 to ENS values
between 21

52
and 42

52
. The PAV algorithm guarantees that both

the number and the positions of the horizontal segments (and,
hence, the bins) in the CORP reliability diagram are determined
in a fully automated, optimal way.

The assumption of nondecreasing CEPs is natural, as decreas-
ing estimates are counterintuitive, routinely being dismissed as
artifacts by practitioners. Furthermore, the constraint provides
an implicit regularization, serving to stabilize the estimate and
counteract overfitting, despite the method being entirely non-
parametric. Under the binning and counting approach, small or
sparsely populated bins are subject to overfitting and large esti-
mation uncertainty, as exemplified by the sharp upward spike in
Fig. 2B. The assumption of isotonicity in CORP stabilizes the
estimate and avoids artifacts; see the examples in Fig. 2D and SI
Appendix, Figs. S2–S5.

In contrast to the binning and counting approach, which
has not been subject to asymptotic analysis, CORP reliability
diagrams are provably statistically consistent: If the predictive
probabilities and event realizations are samples from a fixed,
joint distribution, then the graph of the diagram converges to
the respective population equivalent, as a direct consequence of
existing large sample theory for nonparametric isotonic regres-
sion estimates (27–29). Furthermore, CORP is asymptotically
efficient, in the sense that its automated choice of binning results
in an estimate that is as accurate as possible in the large sample
limit. In Appendix B, we formalize these arguments and report on
a simulation study, for which we give details in Appendix A, and
which demonstrates that the efficiency of the CORP approach
also holds in small samples.

Traditionally, reliability diagrams have been accompanied by
histograms or bar plots of the marginal distribution of the pre-
dictive probabilities, on either standard or logarithmic scales
(e.g., ref. 36). Under the binning and counting approach, the
histogram bins are typically the same as the reliability bins.
In plotting CORP reliability diagrams, we distinguish discretely
and continuously distributed classifiers or forecasts. Intuitively,
the discrete case refers to forecast values that only take on a
finite and sufficiently small number of distinct values. Then,
we show the PAV-calibrated probabilities as dots, interpolate
linearly in between, and visualize the marginal distribution of
the forecast values in a bar diagram, as illustrated in Fig. 3 A
and B. For continuously distributed forecasts, essentially every
forecast takes on a different value, whence the choice of bin-
ning becomes crucial. The CORP reliability diagram displays
the bin-wise constant PAV-calibrated probabilities in horizon-
tal segments, which are linearly interpolated in between, and
we use the Freedman–Diaconis rule (37) to generate a his-
togram estimate of the marginal density of the forecast values,
as exemplified in Fig. 3 C and D. In our software implemen-
tation (38), a simple default is used: If the smallest distance
between any two distinct forecast values is 0.01 or larger, we

operate in the discrete setting, and else in the continuous one.
The CORP reliability diagrams in Figs. 1–3 also display measures
of (most importantly, and hence highlighted) (mis)calibration
(MCB), discrimination (DSC), and uncertainty (UNC), dis-
cussed in detail later on as we introduce the CORP score
decomposition.

Uncertainty Quantification
Bröcker and Smith (39) convincingly advocate the need for
uncertainty quantification, so that structural deviations of the
estimated CEP from the diagonal can be distinguished from
deviations that merely reflect noise. They employ a resampling
technique for the binning and counting method in order to
find consistency bands under the assumption of calibration. For
CORP, we extend this approach in two crucial ways, by gener-
ating either consistency or confidence bands and by using either
a resampling technique or asymptotic distribution theory, where
we leverage existing theory for nonparametric isotonic regression
estimates (27–29).

Consistency bands are generated under the assumption that
the probability forecasts are calibrated, and so they are posi-
tioned around the diagonal. There is a close relation to the
classical interpretation of statistical tests and P values: Under
the hypothesized perfect calibration, how much do reliability
diagrams vary, and how (un)likely is the outcome at hand?
In contrast, confidence bands cluster around the CORP esti-
mate and follow the classical interpretation of frequentist con-
fidence intervals: If one repeats the experiment numerous times,
the fraction of confidence intervals that contain the true CEP
approaches the nominal level. The two methods are illustrated
in Fig. 3, where the diagrams in Fig. 3 B and D feature con-
fidence bands and in Fig. 3 A and C show consistency bands,
as do the CORP reliability diagrams in Figs. 1 B, D, and F
and 2D.

In our adaptation of the resampling approach, for each iter-
ation, the resampled CORP reliability diagram is computed,
and confidence or consistency bands are then specified by
using resampling percentiles, in customary ways. For consistency
bands, the resampling is based on the assumption of calibrated
original forecast values, whereas PAV-calibrated probabilities
are used to generate confidence bands. While resampling works
well in small to medium samples, the use of asymptotic theory
suits cases where the sample size n of the dataset is large—
exactly when the computational cost of resampling-based proce-
dures becomes prohibitive. Existing asymptotic theory is readily
applicable and operates under weak conditions on the marginal
distribution of the forecast values and (strict) monotonicity and
smoothness of (true) CEPs (27–29).

The distinction between discretely and continuously dis-
tributed forecasts becomes critical here, as the asymptotic theory
differs between these cases. For discrete forecasts, results of
El Barmi and Mukerjee (27) imply that the difference between
the estimated and the true CEP, scaled by n1/2, converges to
a (mixture of) normal distribution(s). For continuous forecasts,
following Wright (28), the difference between the estimated
and the true CEP, magnified by n1/3, converges to Chernoff’s
distribution (40). The distinct scaling laws imply that the con-
vergence is faster in the discrete than in the continuous case,
since in the former, the CORP binning stabilizes as it captures
the discrete forecast values, and, thereafter, the amount of sam-
ples per bin increases linearly, in accordance with the standard
n1/2 rate. In either setting, asymptotic consistency and confi-
dence bands can be obtained from quantiles of the asymptotic
distributions in customary ways. See SI Appendix, section S3 for
details on both the resampling algorithm and asymptotic theory.
As a caveat, these techniques operate under the assumption of
independent, or at least exchangeable, forecast cases, which may
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Fig. 3. CORP reliability diagrams in the setting of discretely (A and B) and continuously (C and D), uniformly distributed, simulated predictive prob-
abilities x with a true, miscalibrated CEP of

√
x, with uncertainty quantification via consistency (A and C) and confidence (B and D) bands at the

90% level.

or may not be warranted in practice. We encourage follow-up
work in dependent data settings, as recently tackled for related
types of data-science tools (41).

In our software implementation (38), we use the following
default choices. Suppose that the sample size is n , and there are
k unique forecast values. For consistency bands, if n ≤ 1,000
or if n ≤ 5,000 and n ≤ 50k , we use resampling; else we rely
on asymptotic theory. In the latter case, we employ the discrete
asymptotic distribution if n ≥ 8k2, while otherwise we use the
continuous one. For confidence bands, the current default uses
resampling throughout, as the asymptotic theory depends on the
assumption of a true CEP with strictly positive derivative. In the
simulation examples in Fig. 3, which are based on n = 1,024
observations, this implies the use of resampling in Fig. 3 B–D and
of discrete asymptotic theory in Fig. 3A. Fig. 4 shows coverage
rates of 90% consistency and confidence bands in the simulation
settings described in Appendix A, based on the default choices.
The coverage rates are generally accurate, or slightly conserva-
tive, especially in large samples. In SI Appendix, section S4A, we
qualitatively confirm these results in simulation settings driven
by datasets from meteorology, astrophysics, social science, and
economics.

CORP Score Decomposition: MCB, DSC, and UNC Components
Scoring rules provide a numerical measure of the quality of a
classifier or forecast by assigning a score or penalty S(x , y), based
on forecast value x ∈ [0, 1] for a dichotomous event y ∈{0, 1}.
A scoring rule is proper (42) if it assigns the minimal penalty
in expectation when x equals the true underlying event prob-
ability. If the minimum is unique, the scoring rule is strictly

proper. In practice, for a given sample (x1, y1), . . . , (xn , yn) of
forecast-realization pairs, the empirical score

S̄X =
1

n

n∑
i=1

S(xi , yi), [1]

is used for forecast ranking. Table 1 presents examples of proper
and strictly proper scoring rules. The Brier score and logarithmic
score are strictly proper. In contrast, the misclassification error
is proper, but not strictly proper—all that matters is whether or
not a classifier probability is on the correct side of 1

2
.

Under any proper scoring rule, the mean score S̄X consti-
tutes a measure of overall predictive performance. For several
decades, researchers have been seeking to decompose S̄X into
intuitively appealing components, typically thought of as reli-
ability (REL), resolution (RES), and uncertainty (UNC) terms.
The REL component measures how much the conditional event
frequencies deviate from the forecast probabilities, while RES
quantifies the ability of the forecasts to discriminate between
events and nonevents. Finally, UNC measures the inherent dif-
ficulty of the prediction problem, but does not depend on the
forecast under consideration. While there is a consensus on
the character and intuitive interpretation of the decomposition
terms, their exact form remains subject to debate, despite a
half-century quest in the wake of Murphy’s (11) Brier-score
decomposition. In particular, Murphy’s decomposition is exact in
the discrete case, but fails to be exact under continuous forecasts,
which has prompted the development of increasingly complex
types of decompositions (13, 26).
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Here, we adopt the general score decomposition introduced
by Dawid (12), advocated forcefully by Siegert (14), and dis-
cussed by various other authors as well (e.g., refs. 13 and 43).
Specifically, let S̄X,

S̄C =
1

n

n∑
i=1

S(x̂i , yi), and S̄R =
1

n

n∑
i=1

S(r , yi) [2]

denote the mean score for the original forecast values of
Eq. 1, the mean score for suitably (re)calibrated probabilities
x̂1, . . . , x̂n , and the mean score for a constant reference forecast
r , respectively. Then, S̄X decomposes as

S̄X =
(
S̄X− S̄C

)︸ ︷︷ ︸
MCB

−
(
S̄R− S̄C

)︸ ︷︷ ︸
DSC

+ S̄R︸︷︷︸
UNC

, [3]

where we adopt, in part, terminology proposed by Ehm and
Ovcharov (44) and Pohle (45). As defined in Eq. 3, the miscal-
ibration component MCB is the difference of the mean scores
of the original and the (re)calibrated forecasts. Similarly, the
DSC component quantifies discrimination ability via the dif-
ference between the mean score for the reference and the
(re)calibrated forecast, while the classical measure of uncer-
tainty (UNC) is simply the mean score for the reference
forecast.

In the extant literature, it has been assumed implicitly or
explicitly that the (re)calibrated and reference forecasts can be
chosen at researchers’ discretion (e.g., refs. 14 and 45), without
considering whether or not the transformed probabilities are cal-
ibrated in the classical technical sense. Specifically, a probability
forecast with unique forecast values z1< · · ·< zk that are issued

n1, . . . ,nk times, with o1, . . . , ok of these cases being events, is
“calibrated” if

zj =
oj
nj

for all j = 1, . . . , k . [4]

We posit that in the score decomposition of Eq. 3 the
(re)calibrated values x̂1, . . . x̂n ought to be the PAV-transformed
probabilities, as displayed in the CORP reliability diagram,
whereas the reference forecast r ought to be the marginal
event frequency ȳ = 1

n

∑n
i=1 yi . These forecasts both satisfy the

calibration condition of Eq. 4.
We refer to the resulting decomposition as the CORP score

decomposition, which enjoys the following properties:

• MCB≥ 0 with equality if the original forecast is calibrated.
• DSC≥ 0 with equality if the PAV-(re)calibrated forecast is

constant.
• The decomposition is exact.

In particular, the CORP score decomposition never yields
counterintuitive negative values of the components, contrary to
choices in the extant literature. The cases of vanishing compo-
nents (MCB = 0 or DSC = 0) support the intuitive interpretation
of CORP reliability diagrams, in that parts away from the diag-
onal indicate lack of calibration, whereas extended horizontal
segments are indicative of diminished discrimination ability. For
refined technical statements, proofs, and a demonstration that
under (re)calibration methods other than isotonic regression
these properties may fail, see Appendix C and SI Appendix,
section S5.

If S is the Brier score, then in the special case of discrete fore-
casts with nondecreasing CEPs, the MCB, DSC, and UNC terms
in Eq. 3 agree with the REL, RES, and UNC components, respec-
tively, in the classical Murphy decomposition, as we demonstrate
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Fig. 4. Empirical coverage, averaged equally over the forecast values, of 90% uncertainty bands for CORP reliability diagrams under default choices for
1,000 simulation replicates. Upper concerns consistency bands, and Lower confidence bands. The columns correspond to three types of marginal distributions
for the forecast values, and colors distinguish discrete and continuous settings, as described in Appendix A. Different symbols denote reliance of the bands
on resampling, discrete, or continuous asymptotic distribution theory.
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Table 1. Scoring rules for probability forecasts of binary events

Score Propriety Analytic form of S(x, y)

Brier Strict (x− y)2

Logarithmic Strict −y log x− (1− y) log(1− x)
Misclassification error Nonstrict 1(x< 1

2 , y = 1) +1(x> 1
2 , y = 0) + 1

2 1(x = 1
2 )

in Theorem 2 in Appendix C. If S is the misclassification error,
MCB equals the fraction of cases in which the PAV-calibrated
probability was on the correct side of 1

2
, but the original fore-

cast value was not, minus the fraction vice versa, with natural
adaptations in the case of ties.

In Table 2, we illustrate the CORP Brier-score decomposi-
tion for the probability of precipitation forecasts at Niamey in
Figs. 1 and 2. The purely data-driven Logistic forecast obtains the
best (smallest) mean score, the best (smallest) MCB term, and
the best (highest) DSC component, well in line with the insights
offered by the CORP reliability diagrams and attesting to the
particular challenges for precipitation forecasts over northern
tropical Africa (7).

Interestingly, every proper scoring rule admits a representa-
tion as a mixture of elementary scoring rules (e.g., ref. 42, section
3.2). Consequently, the MCB, DSC, and UNC components of the
CORP decomposition admit analogous representations as mix-
tures of the respective components under the elementary scores,
whence we may plot Murphy diagrams in the sense of Ehm
et al. (46).

Discussion
Our paper addresses two long-standing challenges in the evalua-
tion of probabilistic classifiers by developing the CORP reliabil-
ity diagram that enjoys theoretical guarantees, avoids artifacts,
allows for uncertainty quantification, and yields a fully auto-
mated choice of the underlying binning, without any need for
tuning parameters or implementation choices. The associated
CORP decomposition disaggregates the mean score under any
proper scoring rule into components that are guaranteed to be
nonnegative.

Of particular relevance is the remarkable fact that CORP
reliability diagrams feature optimality properties in both finite-
sample and large-sample settings. Asymptotically, the PAV-
(re)calibrated probabilities, which are plotted in a CORP relia-
bility diagram, minimize estimation error, while in finite samples,
PAV-calibrated probabilities are optimal in terms of any proper
scoring rule, subject to the regularizing constraint of isotonicity.

While CORP reliability diagrams are intended to assess
calibration, a variant—the CORP “discrimination diagram”—
focuses attention at discrimination, by adding histograms for
both the original and the PAV-recalibrated forecast probabili-
ties, as detailed in SI Appendix, section S6. In Fig. 5, we show
examples for the EMOS and Logistic forecasts from Figs. 1 and 2
and Table 2. While both forecasts are quite well calibrated, with
nearly equal Brier-score MCB components of 0.018 and 0.017,
the Logistic forecast exhibits considerably higher discrimination
ability, as reflected by the stronger dispersion in the vertical
histogram for the PAV-recalibrated probabilities and a DSC
component of 0.056, as opposed to 0.030 for the EMOS fore-
cast. In typical current practice, discrimination ability is assessed
via receiver operating characteristic (ROC) curves (47), and for
a visual comparison of competing probability forecasts, ROC
curves are plotted along with reliability diagrams (e.g., ref. 48).
CORP discrimination diagrams offer an alternative, less directly
interpretable, but more compact way of visualizing reliability and
discrimination ability jointly.

We believe that the proposals in this paper can serve as a
blueprint for the development of novel diagnostic and inference

tools for a very wide range of data-science methods. As noted,
the popular Hosmer–Lemeshow goodness-of-fit test for logistic
regression is subject to the same types of ad hoc decisions on
binning schemes, and hence the same types of instabilities as
the binning and counting approach. Tests based on CORP and
the MCB miscalibration measure are promising candidates for
powerful alternatives.

Perhaps surprisingly, the PAV algorithm and its appeal-
ing properties generalize from probabilistic classifiers to mean,
quantile, and expectile assessments for real-valued outcomes
(49). In this light, far-reaching generalizations of the CORP
approach apply to binary regression in general, to standard
(mean) regression, where they yield a mean squared error (MSE)
decomposition with desirable properties, and to quantile and
expectile regression. In all these settings, score decompositions
have been studied (45, 50), and we contend that the PAV algo-
rithm ought to be used to generate the (re)calibrated forecast in
the general decomposition in Eq. 3, whereas the reference fore-
cast ought to be the respective marginal, unconditional event
frequency, mean, quantile, or expectile. We leave these exten-
sions to future work and encourage further investigation from
theoretical, methodological, and applied perspectives.

Appendix A: Simulation Settings
Here, we give details for the simulation scenarios in Figs. 4 and
6, where we use simple random samples with forecast values
drawn from either Uniform, Linear, or Beta Mixture distribu-
tions, in either the continuous setting or discrete settings with
k = 10, 20, or 50 unique forecast values. The binary outcomes
are drawn under the assumption of calibration, whence the true
CEP function coincides with the diagonal.

We begin by describing the continuous setting, where the
Uniform distribution has a uniform density and the Linear dis-
tribution a linearly increasing density with ordinate 0.40 at x = 0
and 1.60 at x = 1. The Beta Mixture distribution uses Beta(1, 10)
and Uniform components with weights 3

4
and 1

4
, respectively.

In the discrete settings with k unique forecast values, we main-
tain the shape of these distributions, but discretize. Specifically,
for j = 1, . . . , k , the probabilistic classifier or forecast attains the
value xj = 2j−1

2k
with probability pj = q(xj )

/∑k
i=1 q(xi), where

q is the density in the continuous case. In Fig. 4, we con-
sider discrete settings with k = 10, 20, and 50 unique forecast
values and the continuous case (marked Inf). Fig. 6 uses dis-
crete settings with k = 10 and 50 unique forecast values and the
continuous case.

Appendix B: Statistical Efficiency of CORP
Suppose that we are given a simple random sample
(x1, y1), . . . , (xn , yn) of predictive probabilities x1, . . . , xn ∈ [0, 1]

Table 2. CORP Brier-score decomposition for the probability of
precipitation forecasts in Figs. 1, 2, and 5

Forecast S̄X MCB DSC UNC

ENS 0.266 0.066 0.044 0.244
EPC 0.234 0.022 0.032 0.244
EMOS 0.232 0.018 0.030 0.244
Logistic 0.206 0.017 0.056 0.244
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and associated realizations y1, . . . , yn ∈{0, 1} from an
underlying population, with the true CEP being nondecreasing.

In the case of discretely distributed forecasts that attain a
small number k of distinct values only, results of El Barmi
and Mukerjee (27) imply that the MSE of the estimates in a
CORP reliability diagram decays at the standard rate of n−1. If
the binning and counting approach separates the distinct fore-
cast values, the traditional reliability diagram and the CORP
reliability diagram are asymptotically the same, and so are the
respective asymptotic distributions. However, under the CORP
approach, the unique forecast values are always correctly iden-
tified as the sample size increases, while under the binning and
counting approach, this may or may not be the case, depending
on implementation decisions.

Large-sample theory for the continuously distributed case is
more involved and generally assumes that the CEP is differ-
entiable with strictly positive derivative. Asymptotic results of
Wright (28) for the variance and of Dai et al. (52) for the bias
imply that the MSE of the CORP estimates decays like n−2/3.
We now compare to the binning and counting approach, either
using m fixed, equidistant bins or using m =m(n) empirical
quantile-based bins. For a general sequence of m(n) bins, the
magnitudes of the asymptotic variance and squared bias are gov-
erned by the most sparsely populated bin, at a disadvantage
relative to the quantile-based case.

The classical reliability diagram relies on a fixed number m
of bins, finds the respective bin-averaged event frequencies, and
plots them against the bin midpoints or bin-averaged forecast
values. Any such approach fails asymptotically, with estimates
that are, in general, biased and inconsistent. More adequately,
a flexible number m(n) of bins can be used, with boundaries
defined via empirical quantiles of x1, . . . , xn . Specifically, m(n)
bins can be bracketed by zero, the empirical quantiles at level
j/m(n) for j = 1, . . . ,m(n)− 1, and one. Then, for n sufficiently
large, each bin covers about n/m(n) data points, and the bin-
averaged CEPs converge to the true CEPs at the respective true
quantiles with an estimation variance that decays like m(n)/n
and a squared bias that decays like m(n)−2. When m(n) is of

order nα for α∈ (0, 1), we obtain a consistent estimate with an
estimation variance that decays like nα−1 and a squared bias that
decays like n−2α. Consequently, the MSE of the estimates is of
order nβ , where β= max(α− 1,−2α). The optimal choice of
the exponent, α= 1

3
, results in an MSE of order n−2/3. While

this asymptotic rate is the same as under the CORP approach,
the CORP reliability diagram is preferable in finite samples, as
we now demonstrate.

In Fig. 6, we detail a comparison of CORP reliability diagrams
to the binning and counting approach with either a fixed num-
ber m of bins, or m =m(n) = [nα] empirical-quantile dependent
bins, where [x ] denotes the smallest integer less than or equal
to x ∈R. For this, we plot the empirical MSE of the various
CEP estimates against the sample size n , using settings described
in Appendix A. Across columns, the distributions of the fore-
cast values differ in shape, across rows, we are in the discrete
setting with k = 10 and 50 unique forecast values, and in the con-
tinuous setting, respectively. Throughout, the CORP reliability
diagrams exhibit the smallest MSE, uniformly over all sample
sizes and against all alternative methods, with the superiority
being the most pronounced under nonuniform forecast distribu-
tions with many unique forecast values, as frequently generated
by statistical or machine-learning techniques. The data-driven
simulation experiments in SI Appendix, section S4B confirm the
superiority of the CORP approach in terms of estimation effi-
ciency. Only for simulation settings with nearly horizontal true
CEPs, the efficiency of the CORP approach is slightly inferior
to binning and counting with very small numbers of bins—
exactly the choices that perform particularly poorly in almost any
other setting.

Appendix C: Properties of CORP Score Decomposition
Consider data (x1, y1), . . . , (xn , yn) in the form of probabil-
ity forecasts and binary outcomes, so that x1, . . . , xn ∈ [0, 1],
and y1, . . . , yn ∈{0, 1}. Let S̄X, S̄C, and S̄R denote the mean
scores for the original forecast values, (re)calibrated probabil-
ities, and a reference forecast, as defined in Eqs. 1 and 2,

MCB = .018
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UNC = .244
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Fig. 5. CORP discrimination diagrams for probability of precipitation forecasts over Niamey, Niger (7), in July–September 2016 with the EMOS (A) and
Logistic (B) methods. The histograms at the top show the marginal distribution of the original forecast values, and the histograms at the right are for the
PAV-recalibrated probabilities.
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Fig. 6. MSE of the CEP estimates in CORP reliability diagrams for samples of size n, in comparison to the binning and counting approach with m = 5, 10,
or 50 fixed bins, or m(n) = [nα] quantile-based bins, where α= 1

6 , 1
3 , or 1

2 . Note the log–log scale. The simulation settings are described in Appendix A, and
MSE values are averaged over 1,000 replicates.

and recall the definition of a calibrated forecast from Eq. 4.
With the specific choices of the PAV-calibrated probabilities
as the (re)calibrated forecasts x̂1, . . . , x̂n , and the marginal
event frequency ȳ = 1

n

∑n
i=1 yi as the constant reference fore-

cast r , the score decomposition in Eq. 3 enjoys the following
properties.

Theorem 1. Given any set of original forecast values and associ-
ated binary events, suppose that we apply the PAV algorithm to
generate a (re)calibrated forecast and use the marginal event fre-
quency as reference forecast. Then, for every proper scoring rule S,
the decomposition defined by Eqs. 2 and 3 satisfies the following:

1) MCB = S̄X− S̄C≥ 0 with equality if the original forecast itself is
calibrated.

2) MCB> 0 if the score is strictly proper and the original forecast is
not calibrated.

3) DSC = S̄R− S̄C≥ 0 with equality if the (re)calibrated forecast is
constant.

4) DSC> 0 if the score is strictly proper and the (re)calibrated
forecast is not constant.

5) The decomposition is exact.

For further discussion see SI Appendix, section S5, where part
A provides the proofs of Theorems 1 and 2, and part B illustrates
that the properties 1–4 generally do not hold if recalibration
methods other than isotonic regression are used. Dawid (12)
introduced the score decomposition in Eq. 3 with the subtle,
but important, difference that the recalibrated probabilities are
obtained as the (unique) forecast-value-wise empirical event fre-
quencies. Then, properties 1–5 of Theorem 1 are satisfied as
well, and if the sequence of (unique) forecast-value-wise event
frequencies is isotonic, Dawid’s decomposition and the CORP
decomposition coincide. However, isotonicity is frequently vio-
lated, especially for datasets with many unique forecast values.

Then, forecast-value-wise recalibration is prone to overfitting,
and, as already noted by Dawid (12), smoothing methods are
required to render the approach useable.

As before, let us assume that the unique forecast values z1<
· · ·< zk are issued n1, . . . ,nk times, with o1, . . . , ok of these cases
being events, so that n1 + · · ·+nk =n and o1 + · · ·+ ok =nȳ .
The classical Brier-score decomposition then becomes

S̄X =
1

n

k∑
j=1

nj

(
oj
nj
− zj

)2
︸ ︷︷ ︸

REL

− 1

n

k∑
j=1

nj

(
oj
nj
− ȳ

)2
︸ ︷︷ ︸

RES

+ ȳ (1− ȳ)︸ ︷︷ ︸
UNC

,

where the UNC component is the same as in the CORP decom-
position in Eq. 3. Furthermore, subject to conditions that in
genuinely discrete settings may be mild, the decompositions
agree in full.

Theorem 2. Under the Brier score, if the sequence o1/n1, . . . , ok/
nk is nondecreasing, then MCB = REL and DSC = RES, respectively.

Data Availability. The probability of precipitation forecast data at Niamey,
Niger, are from the paper by Vogel et al. (ref. 7, figure 2), where the original
data sources are acknowledged. Precipitation forecasts and realizations data
have been deposited at GitHub (https://github.com/TimoDimi/replication
DGJ20). Additional data analyses, simulation studies, technical discussion,
and the proofs of Theorems 1 and 2 have been relegated to SI Appendix.
Reproduction material for both the main article and SI Appendix, including
data and code in the R software environment (51), are available online (38,
53). Open-source code for the implementation of the CORP approach in the
R language and environment for statistical computing (51) is available on
CRAN (38).
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